
Package: clustAnalytics (via r-universe)
September 15, 2024

Type Package

Title Cluster Evaluation on Graphs

Version 0.5.5

Date 2024-02-18

Author Martí Renedo Mirambell

Maintainer Martí Renedo Mirambell <marti.renedo@gmail.com>

Description Evaluates the stability and significance of clusters on
'igraph' graphs. Supports weighted and unweighted graphs.
Implements the cluster evaluation methods defined by Arratia A,
Renedo M (2021) <doi:10.7717/peerj-cs.600>. Also includes an
implementation of the Reduced Mutual Information introduced by
Newman et al. (2020) <doi:10.1103/PhysRevE.101.042304>.

License GPL (>= 3)

Imports Rcpp (>= 1.0.1), mcclust, mclust, truncnorm, boot, fossil,
aricode, dplyr, Rdpack

LinkingTo Rcpp

RdMacros Rdpack

RoxygenNote 7.3.1

Suggests igraphdata, knitr, rmarkdown, testthat,

VignetteBuilder knitr

Encoding UTF-8

URL https://github.com/martirm/clustAnalytics

BugReports https://github.com/martirm/clustAnalytics/issues

Depends R (>= 2.10), igraph

LazyData true

Repository https://martirm.r-universe.dev

RemoteUrl https://github.com/martirm/clustanalytics

RemoteRef HEAD

RemoteSha f1bf549cda9e02f03a542e755123335ceee979e9

1

https://doi.org/10.7717/peerj-cs.600
https://doi.org/10.1103/PhysRevE.101.042304
https://github.com/martirm/clustAnalytics
https://github.com/martirm/clustAnalytics/issues

2 average_degree

Contents
average_degree . 2
average_odf . 3
barabasi_albert_blocks . 4
boot_alg_list . 5
conductance . 6
contingency_to_membership_vectors . 7
count_contingency_tables_log . 7
coverage . 8
cut_ratio . 8
density_ratio . 9
edges_inside . 10
estimate_H_fraction_r_rows . 11
evaluate_significance . 11
evaluate_significance_r . 12
expansion . 13
FOMD . 14
g_forex . 15
igraph_to_edgelist . 15
internal_density . 16
make_graph_weighted . 16
max_odf . 17
normalized_cut . 18
out_degree_fractions . 19
reduced_mutual_information . 19
relabel . 20
rewireCpp . 21
scoring_functions . 22
sort_matrix . 23
triangle_participation_ratio_communities . 23
weighted_clustering_coefficient . 24
weighted_transitivity . 24

Index 26

average_degree Average Degree

Description

Average degree (weighted degree, if the graph is weighted) of a graph’s communities.

Usage

average_degree(g, com)

average_odf 3

Arguments

g Graph to be analyzed (as an igraph object). If the edges have a "weight" at-
tribute, those will be used as weights.

com community membership integer vector. Each element corresponds to a vertex.

Value

Numeric vector with the average degree of each community.

See Also

Other cluster scoring functions: FOMD(), average_odf(), conductance(), coverage(), cut_ratio(),
density_ratio(), edges_inside(), expansion(), internal_density(), max_odf(), normalized_cut(),
scoring_functions(), weighted_clustering_coefficient(), weighted_transitivity()

Examples

data(karate, package="igraphdata")
average_degree(karate, membership(cluster_louvain(karate)))

average_odf Average Out Degree Fraction

Description

Computes the Average Out Degree Fraction (Average ODF) of a graph (which can be weighted)
and its communities.

Usage

average_odf(g, com)

Arguments

g Graph to be analyzed (as an igraph object). If the edges have a "weight" at-
tribute, those will be used as weights (otherwise, all edges are assumed to be
1).

com Community membership integer vector. Each element corresponds to a vertex
of the graph, and contains the index of the community it belongs to.

Value

Numeric vector with the Average ODF of each community.

4 barabasi_albert_blocks

See Also

Other cluster scoring functions: FOMD(), average_degree(), conductance(), coverage(), cut_ratio(),
density_ratio(), edges_inside(), expansion(), internal_density(), max_odf(), normalized_cut(),
scoring_functions(), weighted_clustering_coefficient(), weighted_transitivity()

Examples

data(karate, package="igraphdata")
average_odf(karate, membership(cluster_louvain(karate)))

barabasi_albert_blocks

Generates a Barabási-Albert graph with community structure

Description

Generates a Barabási-Albert graph with community structure

Usage

barabasi_albert_blocks(
m,
p,
B,
t_max,
G0 = NULL,
t0 = NULL,
G0_labels = NULL,
sample_with_replacement = FALSE,
type = "Hajek"

)

Arguments

m number of edges added at each step.
p vector of label probabilities. If they don’t sum 1, they will be scaled accordingly.
B matrix indicating the affinity of vertices of each label.
t_max maximum value of t (which corresponds to graph order)
G0 initial graph
t0 t value at which new vertex start to be attached. If G0 is provided, this argument

is ignored and assumed to be gorder(G0)+1. If it isn’t, a G0 graph will be
generated with order t0-1.

G0_labels labels of the initial graph. If NULL, they will all be set to 1.
sample_with_replacement

If TRUE, allows parallel edges.
type Either "Hajek" or "block_first".

boot_alg_list 5

Value

The resulting graph, as an igraph object. The vertices have a "label" attribute.

Examples

B <- matrix(c(1, 0.2, 0.2, 1), ncol=2)
G <- barabasi_albert_blocks(m=4, p=c(0.5, 0.5), B=B, t_max=100, type="Hajek",

sample_with_replacement = FALSE)

boot_alg_list Performs nonparametric bootstrap to a graph and a list of clustering
algorithms

Description

Performs nonparametric bootstrap on a graph’s by resampling its vertices and clustering the results
using a list of clustering algorithms.

Usage

boot_alg_list(
alg_list = list(Louvain = cluster_louvain, `label prop` = cluster_label_prop, walktrap

= cluster_walktrap),
g,
R = 999,
return_data = FALSE,
type = "global"

)

Arguments

alg_list List of igraph clustering algorithms

g igraph graph object

R Number of bootstrap replicates.

return_data Logical. If TRUE, returns a list of "boot" objects with the full results. Otherwise,
returns a table with the mean results.

type Can be "global" (Variation of Information, Reduced Mutual Information, and
adjusted Rand Index) or "cluster-wise" (Jaccard distance)

Value

If return_data is set to TRUE, returns a list of objects of class "boot" (see boot). Otherwise, returns
as table with the mean distances from the clusters in the original graph to the resampled ones, for
each of the algorithms.

6 conductance

conductance Conductance

Description

Conductance of a graph’s communities, which is given by

cs
2ms + cs

, where cs is the weight of the edges connecting the community s to the rest of the graph, and m_s
is the internal weight of the community.

Usage

conductance(g, com)

Arguments

g Graph to be analyzed (as an igraph object). If the edges have a "weight" at-
tribute, those will be used as weights.

com community membership integer vector. Each element corresponds to a vertex.

Value

Numeric vector with the conductance of each community.

See Also

Other cluster scoring functions: FOMD(), average_degree(), average_odf(), coverage(), cut_ratio(),
density_ratio(), edges_inside(), expansion(), internal_density(), max_odf(), normalized_cut(),
scoring_functions(), weighted_clustering_coefficient(), weighted_transitivity()

Examples

data(karate, package="igraphdata")
conductance(karate, membership(cluster_louvain(karate)))

contingency_to_membership_vectors 7

contingency_to_membership_vectors

Computes possible membership vectors from contingency table

Description

Given a contingency table, obtains a possible pair of corresponding labelings. That is, element
M[i,j] is the number of elements that belong to community i in the first labeling and j in the second.

Usage

contingency_to_membership_vectors(M)

Arguments

M the contingency table

Value

a list containing the two membership vectors

count_contingency_tables_log

Natural logarithm of the number of contingency tables

Description

Given a contingency table, returns the natural logarithm of the number of contingency tables that
share the same column and row sums. This implementation combines a Markov Chain Monte Carlo
approximation with an analytical formula. The input can be either M a contingency table, or two
vectors of labels c1 and c2 (in this case, we are counting contingency tables with the same column
an row sums as the one produced by c1 and c2)

Usage

count_contingency_tables_log(c1, c2, M = NULL, monte_carlo_only = FALSE)

Arguments

c1, c2 membership vectors

M contingency table
monte_carlo_only

Uses only the Monte Carlo approximation

8 cut_ratio

coverage Coverage

Description

Computes the coverage (fraction of internal edges with respect to the total number of edges) of a
graph and its communities

Usage

coverage(g, com)

Arguments

g Graph to be analyzed (as an igraph object).

com Community membership integer vector. Each element corresponds to a vertex
of the graph, and contains the index of the community it belongs to.

Value

Numeric value of the coverage of g and com.

See Also

Other cluster scoring functions: FOMD(), average_degree(), average_odf(), conductance(),
cut_ratio(), density_ratio(), edges_inside(), expansion(), internal_density(), max_odf(),
normalized_cut(), scoring_functions(), weighted_clustering_coefficient(), weighted_transitivity()

Examples

data(karate, package="igraphdata")
coverage(karate, membership(cluster_louvain(karate)))

cut_ratio Cut Ratio

Description

The cut ratio of a graph’s community is the total edge weight connecting the community to the
rest of the graph divided by number of unordered pairs of vertices such that one belongs to the
community and the other does not.

Usage

cut_ratio(g, com)

density_ratio 9

Arguments

g Graph to be analyzed (as an igraph object). If the edges have a "weight" at-
tribute, those will be used as weights.

com community membership integer vector. Each element corresponds to a vertex.

Value

Numeric vector with the cut ratio of each community.

See Also

Other cluster scoring functions: FOMD(), average_degree(), average_odf(), conductance(),
coverage(), density_ratio(), edges_inside(), expansion(), internal_density(), max_odf(),
normalized_cut(), scoring_functions(), weighted_clustering_coefficient(), weighted_transitivity()

Examples

data(karate, package="igraphdata")
cut_ratio(karate, membership(cluster_louvain(karate)))

density_ratio Density Ratio

Description

Density ratio of a graph’s communities.

Usage

density_ratio(g, com, type = "local")

Arguments

g Graph to be analyzed (as an igraph object). If the edges have a "weight" at-
tribute, those will be used as weights.

com community membership integer vector. Each element corresponds to a vertex.

type can either be "local" or "global"

Value

Numeric vector with the internal density of each community.

See Also

Other cluster scoring functions: FOMD(), average_degree(), average_odf(), conductance(),
coverage(), cut_ratio(), edges_inside(), expansion(), internal_density(), max_odf(),
normalized_cut(), scoring_functions(), weighted_clustering_coefficient(), weighted_transitivity()

10 edges_inside

Examples

data(karate, package="igraphdata")
density_ratio(karate, membership(cluster_louvain(karate)))

edges_inside Edges Inside

Description

Number of edges inside a graph’s communities, or their accumulated weight if the graph’s edges
are weighted.

Usage

edges_inside(g, com)

Arguments

g Graph to be analyzed (as an igraph object). If the edges have a "weight" at-
tribute, those will be used as weights.

com community membership integer vector. Each element corresponds to a vertex.

Value

Numeric vector with the internal edge weight of each community

See Also

Other cluster scoring functions: FOMD(), average_degree(), average_odf(), conductance(),
coverage(), cut_ratio(), density_ratio(), expansion(), internal_density(), max_odf(),
normalized_cut(), scoring_functions(), weighted_clustering_coefficient(), weighted_transitivity()

Examples

data(karate, package="igraphdata")
edges_inside(karate, membership(cluster_louvain(karate)))

estimate_H_fraction_r_rows 11

estimate_H_fraction_r_rows

Estimates |H_0|/|H_r*|

Description

This is the total number of contingency tables (of the same margins as M) divided by the number that
match M until the r-th row (included, 0-indexed). Note that if r==0, this is always 1 by definition.

Usage

estimate_H_fraction_r_rows(M, r, error = 0.1)

Arguments

M contingency table

r row index

error error for the convergence of the method

evaluate_significance Evaluates significance of cluster algorithm results on a graph

Description

Given a graph and a list of clustering algorithms, computes several scoring functions on the clusters
found by each of the algorithms.

Usage

evaluate_significance(
g,
alg_list = list(Louvain = cluster_louvain, `label prop` = cluster_label_prop, walktrap

= cluster_walktrap),
no_clustering_coef = FALSE,
gt_clustering = NULL,
w_max = NULL

)

Arguments

g Graph to be analyzed (as an igraph object)

alg_list List of clustering algorithms, which take an igraph graph as input and return an
object of the communities class.

12 evaluate_significance_r

no_clustering_coef

Logical. If TRUE, skips the computation of the clustering coefficient, which is
the most computationally costly of the scoring functions.

gt_clustering Vector of integers that correspond to labels of the ground truth clustering. The
scoring functions will be evaluated on it.

w_max Numeric. Upper bound for edge weights. Should be generally left as default
(NULL).

Value

A data frame with the values of scoring functions (see scoring_functions) of the clusters obtained
by applying the clustering algorithms to the graph.

Examples

data(karate, package="igraphdata")
evaluate_significance(karate)

evaluate_significance_r

Evaluates the significance of a graph’s clusters

Description

Computes community scoring functions to the communities obtained by applying the given cluster-
ing algorithms to a graph. These are compared to the same scores for randomized versions of the
graph obtained by a switching algorithm that rewires edges.

Usage

evaluate_significance_r(
g,
alg_list = list(Louvain = cluster_louvain, `label prop` = cluster_label_prop, walktrap

= cluster_walktrap),
no_clustering_coef = FALSE,
gt_clustering = NULL,
table_style = "default",
ignore_degenerate_cl = TRUE,
Q = 100,
lower_bound = 0,
weight_sel = "const_var",
n_reps = 5,
w_max = NULL

)

expansion 13

Arguments

g Graph to be analyzed (as an igraph object)

alg_list List of clustering algorithms, which take an igraph graph as input and return an
object of the communities class.

no_clustering_coef

Logical. If TRUE, skips the computation of the clustering coefficient, which is
the most computationally costly of the scoring functions.

gt_clustering Vector of integers that correspond to labels of the ground truth clustering. The
scoring functions will be evaluated on it.

table_style By default returns a table with three columns per algorithm: the original one, the
mean of the corresponding rewired scores (suffix "_r") and it’s percentile rank
within the distribution of rewired scores (suffix "_percentile"). If table_style ==
"string", instead returns a table with a column per algorithm where each element
is of the form "original|rewired(percentile)"

ignore_degenerate_cl

Logical. If TRUE, when computing the means of the scoring functions, samples
with only one cluster will be ignored. See rewireCpp.

Q Numeric. Parameter that controls the number of iterations of the switching al-
gorithm, which will be Q times the order of the graph.

lower_bound Numeric. Lower bound to the edge weights. The randomization process will
avoid steps that would make edge weights fall outside this bound. It should
generally be left as 0 to avoid negative weights.

weight_sel Can be either const_var or max_weight.

n_reps Number of samples of the rewired graph.

w_max Numeric. Upper bound for edge weights. The randomization algorithm will
avoid steps that would make edge weights fall outside this bound. Should be
generally left as default (NULL), unless the network has by nature or by con-
struction a known upper bound.

Value

A matrix with the results of each scoring function and algorithm. See table_style for details.

expansion Expansion

Description

Given a graph (possibly weighted) split into communities, the expansion of a community is the sum
of all edge weights connecting it to the rest of the graph divided by the number of vertices in the
community

Usage

expansion(g, com)

14 FOMD

Arguments

g Graph to be analyzed (as an igraph object). If the edges have a "weight" at-
tribute, those will be used as weights.

com community membership integer vector. Each element corresponds to a vertex.

Value

Numeric vector with the expansion of each community.

See Also

Other cluster scoring functions: FOMD(), average_degree(), average_odf(), conductance(),
coverage(), cut_ratio(), density_ratio(), edges_inside(), internal_density(), max_odf(),
normalized_cut(), scoring_functions(), weighted_clustering_coefficient(), weighted_transitivity()

Examples

data(karate, package="igraphdata")
expansion(karate, membership(cluster_louvain(karate)))

FOMD FOMD (Fraction Over Median Degree)

Description

Given a weighted graph and a partition into communities, returns the fraction of nodes of each com-
munity whose internal degree (i.e. the degree accounting only intra-community edges) is greater
than the median degree of the whole graph.

Usage

FOMD(g, com, edgelist = NULL)

Arguments

g Graph to be analyzed (as an igraph object). If the edges have a "weight" at-
tribute, those will be used as weights.

com Community membership integer vector. Each element corresponds to a vertex.

edgelist alternatively, the edgelist of the graph, as a matrix where the first two columns
to the vertices and the third is the weight of each edge.

Value

Numeric vector with the FOMD of each community.

g_forex 15

See Also

Other cluster scoring functions: average_degree(), average_odf(), conductance(), coverage(),
cut_ratio(), density_ratio(), edges_inside(), expansion(), internal_density(), max_odf(),
normalized_cut(), scoring_functions(), weighted_clustering_coefficient(), weighted_transitivity()

Examples

data(karate, package="igraphdata")
FOMD(karate, membership(cluster_louvain(karate)))

g_forex Forex correlation network

Description

Network built from correlations between time series of exchange rate returns. It was built from
the 13 most traded currencies and with data of January 2009. It is a complete graph of 78 vertices
(corresponding to pairs of currencies) and has edge weights bounded between 0 and 1.

Usage

g_forex

Format

An igraph object with 78 vertices and 3003 weighted edges

igraph_to_edgelist Returns edgelist with weights from a weighted igraph graph

Description

This function is just used internally for testing the package

Usage

igraph_to_edgelist(g, sort = TRUE)

Arguments

g igraph graph with weighted edges
sort sorts the edge list lexicographically before returning

Value

A matrix where the first two columns indicate the incident vertices, and the third is the weight of
the corresponding edge.

16 make_graph_weighted

internal_density Internal Density

Description

Internal density of a graph’s communities. That is, the sum of weights of their edges divided by the
number of unordered pairs of vertices (which is the number of potential edges).

Usage

internal_density(g, com)

Arguments

g Graph to be analyzed (as an igraph object). If the edges have a "weight" at-
tribute, those will be used as weights.

com community membership integer vector. Each element corresponds to a vertex.

Value

Numeric vector with the internal density of each community.

See Also

Other cluster scoring functions: FOMD(), average_degree(), average_odf(), conductance(),
coverage(), cut_ratio(), density_ratio(), edges_inside(), expansion(), max_odf(), normalized_cut(),
scoring_functions(), weighted_clustering_coefficient(), weighted_transitivity()

Examples

data(karate, package="igraphdata")
internal_density(karate, membership(cluster_louvain(karate)))

make_graph_weighted Make graph weighted

Description

Given a graph, create a "weight" attribute set to 1 for the edges if it doesn’t exist already.

Usage

make_graph_weighted(g)

Arguments

g igraph graph

max_odf 17

Value

igraph graph with either all edge weights set to 1 (if the original graph was unweighted), or to their
original weights if they already existed (in this case, the graph isn’t modified at all).

max_odf Max Out Degree Fraction

Description

Computes the Maximum Out Degree Fraction (Max ODF) of a graph (which can be weighted) and
its communities.
Computes the Flake Out Degree Fraction (Max ODF) of a graph (which can be weighted) and its
communities.

Usage

max_odf(g, com)

max_odf(g, com)

Arguments

g Graph to be analyzed (as an igraph object). If the edges have a "weight" at-
tribute, those will be used as weights (otherwise, all edges are assumed to be
1).

com Community membership integer vector. Each element corresponds to a vertex
of the graph, and contains the index of the community it belongs to.

Value

Numeric vector with the Max ODF of each community.
Numeric vector with the Max ODF of each community.

See Also

Other cluster scoring functions: FOMD(), average_degree(), average_odf(), conductance(),
coverage(), cut_ratio(), density_ratio(), edges_inside(), expansion(), internal_density(),
normalized_cut(), scoring_functions(), weighted_clustering_coefficient(), weighted_transitivity()
Other cluster scoring functions: FOMD(), average_degree(), average_odf(), conductance(),
coverage(), cut_ratio(), density_ratio(), edges_inside(), expansion(), internal_density(),
normalized_cut(), scoring_functions(), weighted_clustering_coefficient(), weighted_transitivity()

Examples

data(karate, package="igraphdata")
max_odf(karate, membership(cluster_louvain(karate)))
data(karate, package="igraphdata")
max_odf(karate, membership(cluster_louvain(karate)))

18 normalized_cut

normalized_cut Normalized cut

Description

Normalized cut of a graph’s communities, which is given by

cs
2ms + cs

+
cs

2(m−ms) + cs

, where cs is the weight of the edges connecting the community s to the rest of the graph, ms is the
internal weight of the community, and m is the total weight of the network.

Usage

normalized_cut(g, com)

Arguments

g Graph to be analyzed (as an igraph object). If the edges have a "weight" at-
tribute, those will be used as weights.

com community membership integer vector. Each element corresponds to a vertex.

Value

Numeric vector with the normalized cut of each community.

See Also

Other cluster scoring functions: FOMD(), average_degree(), average_odf(), conductance(),
coverage(), cut_ratio(), density_ratio(), edges_inside(), expansion(), internal_density(),
max_odf(), scoring_functions(), weighted_clustering_coefficient(), weighted_transitivity()

Examples

data(karate, package="igraphdata")
normalized_cut(karate, membership(cluster_louvain(karate)))

out_degree_fractions 19

out_degree_fractions Maximum, Average, and Flake Out Degree Fractions of a Graph Par-
tition

Description

Given a weighted graph and a partition into communities, returns the maximum, average and flake
out degree fractions of each community.

Usage

out_degree_fractions(g, com, edgelist)

Arguments

g Graph to be analyzed (as an igraph object)

com Community membership vector. Each element corresponds to a vertex of the
graph, and contains the index of the community it belongs to.

edgelist alternatively, the edgelist of the graph

Value

A numeric matrix where each row corresponds to a community, and the columns contain the max,
average and flake ODFs respectively.

reduced_mutual_information

Reduced Mutual Information

Description

Computes the Newman’s Reduced Mutual Information (RMI) as defined in (Newman et al. 2020).

Usage

reduced_mutual_information(
c1,
c2,
base = 2,
normalized = FALSE,
method = "approximation2",
warning = TRUE

)

20 relabel

Arguments

c1, c2 membership vectors

base base of the logarithms used in the calculations. Changing it only scales the final
value. By default set to e=exp(1).

normalized If true, computes the normalized version of the corrected mutual information.

method Can be "hybrid" (default, combines Monte Carlo with analytical formula), "monte_carlo",
approximation1" (appropriate for partitions into many very small clusters), or
"approximation2" (for partitions into few larger clusters).

warning set to false to ignore the warning.

Details

The implementation is based on equations 23 (25 for the normalized case) and 29 in (Newman et
al. 2020). The evaluations of the Γ functions can get too large and cause overflow issues in the
intermediate steps, so the following term of equation 29:

1

2
log

Γ(µR)Γ(νS)

(Γ(ν)Γ(R))S(Γ(µ)Γ(S))R

is rewritten as

1

2
(log Γ(µR) + log Γ(νS)− S log(Γ(ν)− S log(Γ(R)−R log Γ(µ)−R log Γ(R))

, and then the function lgamma is used instead of gamma.

Value

The value of Newman’s RMI (a scalar).

References

Newman MEJ, Cantwell GT, Young J (2020). “Improved mutual information measure for clus-
tering, classification, and community detection.” Phys. Rev. E, 101(4), 042304. doi:10.1103/
PhysRevE.101.042304.

relabel Relabels membership vector

Description

Takes a vector of vertex ids indicating community membership, and relabels the communities to
have consecutive values from 1 to the number of communities.

Usage

relabel(c)

https://doi.org/10.1103/PhysRevE.101.042304
https://doi.org/10.1103/PhysRevE.101.042304

rewireCpp 21

Arguments

c numeric vector of vertex ids, not necessarily consecutive

Value

A numeric vector of consecutive vertex ids starting from one

rewireCpp Randomizes a weighted graph while keeping the degree distribution
constant.

Description

Converts the graph to a weighted edge list in NumericMatrix, which is compatible with Rcpp. The
Rcpp function "randomize" is called, and then the resulting edge list is converted back into an igraph
object.

Usage

rewireCpp(
g,
Q = 100,
weight_sel = "max_weight",
lower_bound = 0,
upper_bound = NULL

)

Arguments

g igraph graph, which can be weighted.

Q Numeric. Parameter that controls the number of iterations, which will be Q
times the order of the graph.

weight_sel can be either "const_var" or "max_weight".
lower_bound, upper_bound

Bounds to the edge weights. The randomization process will avoid steps that
would make edge weights fall outside these bounds. Set to NULL for no bound.
By default, 0 and NULL respectively.

Value

The rewired graph.

22 scoring_functions

scoring_functions Scoring Functions of a Graph Partition

Description

Computes the scoring functions of a graph and its clusters.

Usage

scoring_functions(
g,
com,
no_clustering_coef = TRUE,
type = "local",
weighted = TRUE,
w_max = NULL

)

Arguments

g Graph to be analyzed (as an igraph object). If the edges have a "weight" at-
tribute, those will be used as weights (otherwise, all edges are assumed to be
1).

com Community membership integer vector. Each element corresponds to a vertex
of the graph, and contains the index of the community it belongs to.

no_clustering_coef

Logical. If TRUE, skips the computation of the clustering coefficient (which
can be slow on large graphs).

type can be "local" for a cluster by cluster analysis, or "global" for a global analysis
of the whole graph partition.

weighted Is the graph weighted? If it is, doesn’t compute TPR score.

w_max Numeric. Upper bound for edge weights. Should be generally left as default
(NULL). Only affects the computation of the clustering coefficient.

Value

If type=="local", returns a dataframe with a row for each community, and a column for each
score. If type=="global", returns a single row with the weighted average scores.

See Also

Other cluster scoring functions: FOMD(), average_degree(), average_odf(), conductance(),
coverage(), cut_ratio(), density_ratio(), edges_inside(), expansion(), internal_density(),
max_odf(), normalized_cut(), weighted_clustering_coefficient(), weighted_transitivity()

sort_matrix 23

Examples

data(karate, package="igraphdata")
scoring_functions(karate, membership(cluster_louvain(karate)))

sort_matrix Sort matrix

Description

Given a matrix, rearranges rows and columns so that row sums and col sums end up in ascending
order.

Usage

sort_matrix(M)

Arguments

M matrix

Value

rearranged matrix

triangle_participation_ratio_communities

Triangle Participation Ratio (community-wise)

Description

Computes the triangle participation ratio (proportion of vertices that belong to a triangle). The
computation is done to the subgraphs induced by each of the communities in the given partition.

Usage

triangle_participation_ratio_communities(g, com)

Arguments

g The input graph (as an igraph object). Edge weights and directions are ignored.

com Community membership vector. Each element corresponds to a vertex of the
graph, and contains the index of the community it belongs to.

Value

A vector containing the triangle participation ratio of each community.

24 weighted_transitivity

weighted_clustering_coefficient

Weighted clustering coefficient of a weighted graph.

Description

Weighted clustering Computed using the definition given by McAssey, M. P. and Bijma, F. in "A
clustering coefficient for complete weighted networks" (2015).

Usage

weighted_clustering_coefficient(g, upper_bound = NULL)

Arguments

g igraph graph

upper_bound upper bound to the edge weights used to compute the integral

Value

The weighted clustering coefficient of the graph (a scalar).

See Also

Other cluster scoring functions: FOMD(), average_degree(), average_odf(), conductance(),
coverage(), cut_ratio(), density_ratio(), edges_inside(), expansion(), internal_density(),
max_odf(), normalized_cut(), scoring_functions(), weighted_transitivity()

Examples

data(karate, package="igraphdata")
weighted_clustering_coefficient(karate)

weighted_transitivity Weighed transitivity of a weighted graph.

Description

Computed using the definition given by McAssey, M. P. and Bijma, F. in "A clustering coefficient
for complete weighted networks" (2015).

Usage

weighted_transitivity(g, upper_bound = NULL)

weighted_transitivity 25

Arguments

g igraph graph

upper_bound upper bound to the edge weights used to compute the integral

Value

The weighted transitivity of the graph (a scalar).

See Also

Other cluster scoring functions: FOMD(), average_degree(), average_odf(), conductance(),
coverage(), cut_ratio(), density_ratio(), edges_inside(), expansion(), internal_density(),
max_odf(), normalized_cut(), scoring_functions(), weighted_clustering_coefficient()

Examples

data(karate, package="igraphdata")
weighted_transitivity(karate)

Index

∗ cluster scoring functions
average_degree, 2
average_odf, 3
conductance, 6
coverage, 8
cut_ratio, 8
density_ratio, 9
edges_inside, 10
expansion, 13
FOMD, 14
internal_density, 16
max_odf, 17
normalized_cut, 18
scoring_functions, 22
weighted_clustering_coefficient,

24
weighted_transitivity, 24

∗ datasets
g_forex, 15

average_degree, 2, 4, 6, 8–10, 14–18, 22, 24,
25

average_odf, 3, 3, 6, 8–10, 14–18, 22, 24, 25

barabasi_albert_blocks, 4
boot, 5
boot_alg_list, 5

conductance, 3, 4, 6, 8–10, 14–18, 22, 24, 25
contingency_to_membership_vectors, 7
count_contingency_tables_log, 7
coverage, 3, 4, 6, 8, 9, 10, 14–18, 22, 24, 25
cut_ratio, 3, 4, 6, 8, 8, 9, 10, 14–18, 22, 24,

25

density_ratio, 3, 4, 6, 8, 9, 9, 10, 14–18, 22,
24, 25

edges_inside, 3, 4, 6, 8, 9, 10, 14–18, 22, 24,
25

estimate_H_fraction_r_rows, 11

evaluate_significance, 11
evaluate_significance_r, 12
expansion, 3, 4, 6, 8–10, 13, 15–18, 22, 24, 25

FOMD, 3, 4, 6, 8–10, 14, 14, 16–18, 22, 24, 25

g_forex, 15
gamma, 20

igraph_to_edgelist, 15
internal_density, 3, 4, 6, 8–10, 14, 15, 16,

17, 18, 22, 24, 25

lgamma, 20

make_graph_weighted, 16
max_odf, 3, 4, 6, 8–10, 14–16, 17, 18, 22, 24,

25

normalized_cut, 3, 4, 6, 8–10, 14–17, 18, 22,
24, 25

out_degree_fractions, 19

reduced_mutual_information, 19
relabel, 20
rewireCpp, 13, 21

scoring_functions, 3, 4, 6, 8–10, 12, 14–18,
22, 24, 25

sort_matrix, 23

triangle_participation_ratio_communities,
23

weighted_clustering_coefficient, 3, 4, 6,
8–10, 14–18, 22, 24, 25

weighted_transitivity, 3, 4, 6, 8–10,
14–18, 22, 24, 24

26

	average_degree
	average_odf
	barabasi_albert_blocks
	boot_alg_list
	conductance
	contingency_to_membership_vectors
	count_contingency_tables_log
	coverage
	cut_ratio
	density_ratio
	edges_inside
	estimate_H_fraction_r_rows
	evaluate_significance
	evaluate_significance_r
	expansion
	FOMD
	g_forex
	igraph_to_edgelist
	internal_density
	make_graph_weighted
	max_odf
	normalized_cut
	out_degree_fractions
	reduced_mutual_information
	relabel
	rewireCpp
	scoring_functions
	sort_matrix
	triangle_participation_ratio_communities
	weighted_clustering_coefficient
	weighted_transitivity
	Index

